En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies pour vous proposer des publicités adaptées à vos centres d’intérêts, réaliser des statistiques ainsi qu’interagir avec des réseaux sociaux.

Pour en savoir plus et paramétrer les cookies

Identifiez-vous ou Créez un compte

pi

Réel transcendant noté π qui est le rapport de la circonférence d'un cercle à la longueur de son diamètre.

MATHÉMATIQUES

Le nombre π est d'un emploi très courant en mathématiques (circonférence du cercle, aire du disque, mesure des angles en radians, congruence mod 2kπ, intégrales, séries, probabilités, etc.) et en physique. Sa désignation par la lettre grecque π s'est imposée avec le succès d'un ouvrage de L. Euler publié en 1748. Ce nombre a longtemps passionné les mathématiciens par son intérêt en géométrie et en analyse (séries, fractions continues) et par l'étude de sa transcendance (démontrée par F. von Lindemann en 1882). Depuis 4 000 ans, des mathématiciens s'efforcent de calculer le plus grand nombre de décimales de π. Le rythme s'est accéléré depuis l'apparition des ordinateurs : le cap du million de décimales a été franchi en 1973 et celui du milliard en 1989. Le Japonais Yasumasa Kanada ne cesse d’allonger la liste des décimales connues : 400 h de calcul d’un superordinateur Hitachi lui ont permis, en 2002, de déterminer 1 241 milliards de décimales, ce qui constitue le record actuel. On ne sait toujours pas si les décimales de π sont aléatoires. Dans la pratique courante, on utilise généralement une valeur approchée par défaut égale à 3,14, ou celle, rationnelle, de 22/7, ou celle de π2 égale à 10. Pour retenir les premières décimales de π, on peut aussi mémoriser la phrase suivante : « Que j'aime à faire apprendre un nombre utile aux sages ! » ; en juxtaposant le nombre de lettres de chaque mot, on obtient ainsi la valeur 3,141 592 653 5.