Identifiez-vous ou Créez un compte

méiose

(grec meiôsis, diminution)

Méiose, reproduction cellulaire non conforme
Méiose, reproduction cellulaire non conforme

Double division de la cellule aboutissant à la réduction de moitié du nombre des chromosomes, et qui se produit au moment de la formation des cellules reproductrices, ou gamètes. (À l'issue de la méiose, chaque cellule diploïde forme ainsi quatre gamètes haploïdes.)

BIOLOGIE

La méiose intervient dans la formation des gamètes mâles (spermatozoïdes) et femelles (ovules), constituant un phénomène régulateur préalable à la fécondation. En effet, si la méiose n'avait pas lieu, les deux gamètes se rencontrant lors de la fécondation auraient chacun 2n chromosomes et formeraient une cellule-œuf anormale à 4n chromosomes.

La méiose est donc un mécanisme particulier de division cellulaire qui aboutit à la réduction de moitié du nombre de chromosomes : elle permet d'obtenir quatre cellules filles haploïdes (à n chromosomes) à partir d'une cellule mère diploïde (à 2n chromosomes).

La méiose implique deux divisions distinctes qui mettent en jeu l'élaboration des fuseaux achromatiques et la migration des chromosomes.

1. La première division de méiose, ou division réductionnelle

Elle est précédée d'une longue prophase durant laquelle s'effectuent l'appariement des chromosomes homologues et des échanges entre chromosomes. La prophase est divisée en cinq stades, dont les noms font référence à l'aspect des chromosomes. La synthèse d'ADN a lieu avant le début de la méiose.

1.1. La prophase 1

Au premier stade, dit leptotène (« filament fin », littéralement), les chromosomes, bien que peu condensés, deviennent visibles. Apparaissent alors des zones limitées de spiralisation croissante, les chromomères. Pour les chromosomes homologues, la taille et la position de ces zones restent identiques.

Au second stade, dit zygotène («filament torsadé»), les chromosomes, au cours d'un processus appelé synapsis, se condensent et se raccourcissent. Les chromosomes homologues s'apparient – les paires individualisées sont alors appelées bivalents. Il n'existe pas de site spécifique d'appariement le long des chromosomes.

Le troisième stade, dit pachytène (« filament épais »), relativement long, se caractérise par une condensation et un raccourcissement accrus des chromosomes, qui présentent finalement un aspect de points et de bâtonnets. Il peut survenir à ce stade des échanges de segments au cours d'enjambements (crossing-over) entre les chromatides de chromosomes homologues.

Au stade diplotène (« filament double »), les paires de chromosomes homologues se séparent partiellement en quatre chromatides. Ils restent attachés en un ou plusieurs points, appelés chiasmas, qui correspondent aux zones de crossing-over, survenus lors du stade précédent. Les paires de chromosomes offrent l'aspect de croix ou de boucles, selon qu'ils s'attachent en un point ou deux. Pendant ce temps, la spiralisation et le raccourcissement des chromosomes suivent leur cours.

Au dernier stade, la diacinèse, la condensation, et donc l'épaississement, est maximale. De plus, les chromosomes tendent à migrer vers la périphérie du noyau. Quelquefois, les chiasmas peuvent se déplacer vers les extrémités des chromosomes, c'est la terminalisation. La rupture de l'enveloppe nucléaire permet la fixation des paires de bivalents au fuseau de microtubules qui s'est formé pendant cette prophase.

1.2. La métaphase 1

Les bivalents ont atteint un état relativement stable ; leurs kinétochores (points d’attache des microtubules sur le chromosome) sont équidistants par rapport à la plaque équatoriale. La forme qu'adopte alors un bivalent dépend de la localisation des kinétochores ainsi que du nombre et de la position de ses chiasmas. Les bivalents présentant un seul chiasma prennent l'aspect d'une croix. L'état de stabilité atteint lors de la première métaphase résulte directement de la tension qu'exercent les fibres centromériques sur les kinétochores de chaque bivalent ainsi que de l'association constante des chromatides sœurs.

1.3. L'anaphase 1

Les chiasmas achèvent leur terminalisation. Les chromosomes homologues de chaque paire se séparent alors ; ils migrent chacun vers un pôle de la cellule. Ce déplacement est dû au raccourcissement des fibres du fuseau, qui entraînent les kinétochores vers les pôles.

1.4. La télophase 1

À ce stade, la membrane nucléaire se reconstitue (une membrane autour de chaque groupe de chromosomes), les nucléoles réapparaissent et la cytocinèse (la division du cytoplasme) a lieu. On obtient alors deux cellules filles à n chromosomes. La quantité de chromosomes a été divisée par deux : c’est pourquoi la première division méiotique est aussi appelée division réductionnelle.

2. L'interphase

Cette étape est particulièrement courte. Il n'y a en effet pas de réplication d'ADN entre la première et la seconde division. Les deux cellules filles issues de la première division méiotique restent haploïdes (n).

3. La seconde division de méiose

Chez certains végétaux, la télophase 1, l'interphase et la prophase 2 sont pratiquement confondues. Toutefois, cette règle n'est pas générale : en effet, la plupart des espèces végétales et animales présentent une seconde division complète.

Au cours de la prophase 2, un fuseau méiotique se constitue, tandis que l'enveloppe nucléaire disparaît.

Lors de la métaphase 2, les demi-bivalents migrent vers le plan équatorial du fuseau, où durant l'anaphase 2 chaque chromosome se scinde longitudinalement en deux chromatides.

C'est à la télophase 2 qu'ont lieu la formation de la membrane des deux noyaux fils, ainsi que la division du cytoplasme (cytocinèse).

Cette seconde division est une division équationnelle, qui permet à chaque cellule haploïde issue de la première division de donner deux autres cellules haploïdes.

4. Les produits de la méiose

Les deux divisions de la méiose répartissent les quatre chromatides de chaque bivalent dans les noyaux de chacune des quatre cellules filles. Ce processus implique que le matériel génétique des produits de la méiose est divisé par deux, réduction rétablie lors de la fusion des deux cellules sexuelles (fécondation).

La méiose entraîne également une recombinaison de chromosomes entiers (réassortiment) ainsi que de certains de leurs segments (enjambements). Le réassortiment est dû au caractère aléatoire du sens de migration des paires de centromères au cours de la première division, et de celui des demi-centromères au cours de la seconde. Il est à l'origine des différences ou des ressemblances entre un enfant et ses parents. Un enjambement consiste en un échange de segments géographiquement semblables entre deux chromatides non sœurs. Ce phénomène a lieu lorsque les chiasmas se sont déjà formés.

BOTANIQUE

Dans le règne végétal, les cellules haploïdes peuvent se multiplier par mitose pendant au moins deux ou trois générations cellulaires et parfois beaucoup plus. Les produits immédiats de la méiose ne sont donc pas toujours les gamètes eux-mêmes. Chez les angiospermes (plantes à fleurs), par exemple, le gamète femelle (oosphère) n'est que l'un de huit noyaux haploïdes issus de trois divisions successives de la cellule mère du sac embryonnaire, tandis que le gamète mâle est issu de deux divisions cellulaires successives au sein du grain de pollen d'abord, puis du tube pollinique.

→ reproduction.